End Term Assessment – Jan /Feb 2022

UG: Semester - V

(B.Tech-CSE/Data Science and Artificial Intelligence/Cloud based Mobile Application/Blockchain and IOT/Development and Operations - 2019 Batch)

Subject Code: CS3005 Subject Name: Theory of Computation

Duration: 3 hours (including time for uploading) Max. Marks: 50

Instructions

- Write name and registration number, page number, on all the pages, convert into one PDF, tag it with your Registration Number_Name_SubjectCode_SubjectTitle
- The Assessment consists of 2 sections
 - o Part A contains 10 questions of 2 marks each and all questions are compulsory.
 - Part B consists of 4 questions of 10 marks each, 3 questions out of 4 to be attempted
- Hand written responses to be submitted/uploaded as scanned pages of answer sheets (max. 5 pages) within the mentioned duration. 6th page and onwards won't be evaluated

PART – A
2 * 10 =20 Marks (Each answer- Word Limit- 50 Words)

- 1. Prove that (1+00*1)+(1+00*1)(0+10*1)*(0+10*1) = 0*1(0+10*1)*.
- 2. What is the compliment of the language accepted by given ε -NFA?

1. Q\∑	2. 1	3. E
4. →q ₀	5. q ₁	6. Ø
7. *q ₁	8. Ø	9. q ₂
10. q ₂	11. Ø	12. q ₀

- 3. Consider the following language $L_1 = \phi$ and $L_2 = \{b\}$. Find the following represents $((L_1L_2^*) \cup L_1^*)$.
- 4. Differentiate Moore and Mealy Machine.
- 5. Consider the production rules: $S \rightarrow AB$, $A \rightarrow BC \mid a$, $B \rightarrow CC \mid b$, $C \rightarrow a$. Check the finiteness of language generated by this grammar.
- 6. Consider the following grammar and remove left recursion S \rightarrow Aa | b, A \rightarrow Ac | Sd | ϵ
- 7. Consider L_1 is context-free language and L_2 is a regular language. Justify that $L_1 \cup L_2$ is regular language or not?
- 8. Design a PDA equivalent to the following grammar $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$.
- 9. Define Turing Machine.
- 10. What is recursive language?

PART – B 10*3 = 30 Mark (Each answer- Word limit- 250 words)

 ${\bf 11.}\ Construct\ a\ transition\ graph\ that\ recognizes\ the\ set.$

(10 Marks)

$$R = [1 \cdot (00)^* \cdot 1 + 0 \cdot 1^* \cdot 0]^*$$

12. Construct a DFA equivalent to the given ϵ -NFA.

(10 Marks)

State / Input	а	В	а
→ Q ₀	Q_0	${Q_0,Q_2}$	Q ₃
Q_1	Q ₃	${Q_2,Q_3}$	Ø
Q ₂	Q ₄	Ø	Ø
*Q₃	Q ₄	Ø	Q_1
*Q ₄	Ø	Ø	Ø

- 13. Consider the Grammar $G=(\{A_1,A_2,A_3\},\{a,b\},P,A_1)$ where P consists of $A_1\to A_2A_3,A_2\to A_3A_1|b,A_3\to A_1A_2|a.$ Convert G into Greibach normal form (GNF). (10 Marks)
- 14. i. Convert the following grammar S \rightarrow 0S1|A, A \rightarrow 1A0|S| ϵ to a PDA that accept the same language. (05 Marks)
 - ii. State and prove Rice's theorem.

(05 Marks)